1 Mol. Psychiatry 2011 Jan 16: 76-85
PMID 19721433
Title Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics.
Abstract schizophreniais an often devastating neuropsychiatric illness. Understanding the genetic variation affecting response to antipsychotics is important to develop novel diagnostic tests to match individualschizophreniapatients to the most effective and safe medication. In this study, we use a genome-wide approach to detect genetic variation underlying individual differences in response to treatment with the antipsychotics olanzapine, quetiapine, risperidone, ziprasidone and perphenazine. Our sample consisted of 738 subjects with DSM-IVschizophreniawho took part in the Clinical Antipsychotic Trials of Intervention Effectiveness. Subjects were genotyped using the Affymetrix 500 K genotyping platform plus a custom 164 K chip to improve genome-wide coverage. Treatment outcome was measured using the Positive and Negative Syndrome Scale. Our criterion for genome-wide significance was a prespecified threshold that ensures that, on an average, only 10% of the significant findings are false discoveries. The top statistical result reached significance at our prespecified threshold and involved a single-nucleotide polymorphism (SNP) in an intergenic region on chromosome 4p15. In addition, SNPs in Ankyrin Repeat and Sterile Alpha Motif Domain-Containing Protein 1B (ANKS1B)和Contactin-Associated Protein-Like 5 gene (CNTNAP5), which mediated the effects of olanzapine and risperidone on Negative symptoms, were very close to our threshold for declaring significance. The most significant SNP in CNTNAP5 is nonsynonymous, giving rise to an amino-acid substitution. In addition to highlighting our top results, we provide all P-values for download as a resource for investigators with the requisite samples to carry out replication. This study demonstrates the potential of genome-wide association studies to discover novel genes that mediate the effects of antipsychotics, which could eventually help to tailor drug treatment toschizophrenicpatients.
SCZ Keywords schizophrenia, schizophrenic
2 Mol. Psychiatry 2011 Jan 16: 76-85
PMID 19721433
Title Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics.
Abstract schizophreniais an often devastating neuropsychiatric illness. Understanding the genetic variation affecting response to antipsychotics is important to develop novel diagnostic tests to match individualschizophreniapatients to the most effective and safe medication. In this study, we use a genome-wide approach to detect genetic variation underlying individual differences in response to treatment with the antipsychotics olanzapine, quetiapine, risperidone, ziprasidone and perphenazine. Our sample consisted of 738 subjects with DSM-IVschizophreniawho took part in the Clinical Antipsychotic Trials of Intervention Effectiveness. Subjects were genotyped using the Affymetrix 500 K genotyping platform plus a custom 164 K chip to improve genome-wide coverage. Treatment outcome was measured using the Positive and Negative Syndrome Scale. Our criterion for genome-wide significance was a prespecified threshold that ensures that, on an average, only 10% of the significant findings are false discoveries. The top statistical result reached significance at our prespecified threshold and involved a single-nucleotide polymorphism (SNP) in an intergenic region on chromosome 4p15. In addition, SNPs in Ankyrin Repeat and Sterile Alpha Motif Domain-Containing Protein 1B (ANKS1B)和Contactin-Associated Protein-Like 5 gene (CNTNAP5), which mediated the effects of olanzapine and risperidone on Negative symptoms, were very close to our threshold for declaring significance. The most significant SNP in CNTNAP5 is nonsynonymous, giving rise to an amino-acid substitution. In addition to highlighting our top results, we provide all P-values for download as a resource for investigators with the requisite samples to carry out replication. This study demonstrates the potential of genome-wide association studies to discover novel genes that mediate the effects of antipsychotics, which could eventually help to tailor drug treatment toschizophrenicpatients.
SCZ Keywords schizophrenia, schizophrenic
3 J. Neurosci. 2015 Jun 35: 8986-96
PMID 26085624
Title ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization.
Abstract NMDA receptors (NMDARs) are key mediators of glutamatergic transmission and synaptic plasticity, and their dysregulation has been linked to diverse neuropsychiatric and neurodegenerative disorders. While normal NMDAR function requires regulated expression and trafficking of its different subunits, the molecular mechanisms underlying these processes are not fully understood. Here we report that the amyloid precursor protein intracellular domain associated-1 protein (AIDA-1), which associates with NMDARs and is encoded byANKS1B, a gene recently linked toschizophrenia, regulates synaptic NMDAR subunit composition. Forebrain-specific AIDA-1 conditional knock-out (cKO) mice exhibit reduced GluN2B-mediated and increased GluN2A-mediated synaptic transmission, and biochemical analyses show AIDA-1 cKO mice have low GluN2B and high GluN2A protein levels at isolated hippocampal synaptic junctions compared with controls. These results are corroborated by immunocytochemical and electrophysiological analyses in primary neuronal cultures following acute lentiviral shRNA-mediated knockdown of AIDA-1. Moreover, hippocampal NMDAR-dependent but not metabotropic glutamate receptor-dependent plasticity is impaired in AIDA-1 cKO mice, further supporting a role for AIDA-1 in synaptic NMDAR function. We also demonstrate that AIDA-1 preferentially associates with GluN2B and with the adaptor protein Ca(2+)/calmodulin-dependent serine protein kinase and kinesin KIF17, which regulate the transport of GluN2B-containing NMDARs from the endoplasmic reticulum (ER) to synapses. Consistent with this function, GluN2B accumulates in ER-enriched fractions in AIDA-1 cKO mice. These findings suggest that AIDA-1 regulates NMDAR subunit composition at synapses by facilitating transport of GluN2B from the ER to synapses, which is critical for NMDAR plasticity. Our work provides an explanation for how AIDA-1 dysfunction might contribute to neuropsychiatric conditions, such asschizophrenia.
SCZ Keywords schizophrenia, schizophrenic
Baidu